Application of a Tandem Mass Spectrometer and Core-Shell Particle Column for the Determination of 151 Pesticides in Grains

Jian Wang,* Willis Chow, and Wendy Cheung
Canadian Food Inspection Agency Calgary Laboratory, 3650 36th Street N.W., Calgary, Alberta, Canada T2L 2L1

Abstract

A comparison of ultrahigh performance liquid chromatography (UHPLC) with a $2.6 \mu \mathrm{~m}$ core-shell particle column (Kinetex C_{18}) and conventional liquid chromatography (LC) with a $3 \mu \mathrm{~m}$ porous particle column (Atlantis dC_{18}), coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS), for the determination of 151 pesticides in grains is presented in this study. Pesticides were extracted from grain samples using a procedure known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). Quantification, with an analytical range from 5 to $500 \mu \mathrm{~g} / \mathrm{kg}$, was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards. The method performance parameters that included overall recovery, intermediate precision, and measurement uncertainty were evaluated using a designed experiment, that is, the nested design. The UHPLC (Kinetex C_{18}) was superior to conventional LC (Atlantis dC_{18}) as it yielded a shorter analytical run time, increased method sensitivity, and improved method performance. For UHPLC/ESI-MS/MS (Kinetex C_{18}), 90% of the pesticides studied had recoveries between 81 and $110 \%, 88 \%$ of the pesticides had intermediate precision $\leq 20 \%$, and 84% of the pesticides showed measurement uncertainty $\leq 40 \%$. As compared to UHPLC/ESI-MS/MS (Kinetex dC_{18}), the LC/ESI-MS/MS (Atlantis dC 18) showed a relatively lower sensitivity, less repeatability, and larger measurement uncertainty. UHPLC/ESI-MS/MS with $2.6 \mu \mathrm{~m}$ core-shell particle column and scheduled MRM proved to be a good choice for quantification or determination of pesticides in grains.

KEYWORDS: UHPLC/ESI-MS/MS, LC/ESI-MS/MS, pesticides, grains, measurement uncertainty

INTRODUCTION

There are over 1100 pesticides from a broad range of classes that are widely used in various combinations at different stages of cultivation or during postharvest storage to protect crops against pests and fungi and to provide quality preservation. Pesticide residues that remain in the food supply could pose a risk to human health because of their potential subacute and chronic toxicity. In Canada, many food commodities such as fruits and vegetables, infant food, tea, etc. have been tested for pesticide residues under the federal government's Canadian National Chemical Residues Monitoring Program and Food Safety Action Plan. The Canadian Food Inspection Agency requires both sensitive and confirmatory methods to test pesticides in grains for chemical residue monitoring programs and for risk assessments of consumer exposure to pesticides.

Gas chromatography (GC) and liquid chromatography (LC) mass spectrometers are essential means for determination of pesticide residues in foods. ${ }^{1}$ The applications of LC-MS for analysis of LC-amenable pesticides have been profound in the past few years because of its high sensitivity and good repeatability for trace level detection and quantification. The columns used for these kinds of applications were generally $\geq 3 \mu \mathrm{~m}$ porous C_{18} particles in the past, and the analytical time was relatively long. ${ }^{2}$ The core-shell or fine porous shell particles, that is, Halo and Kinetex, represent a recent key technological advancement in the arena of fast LC separations. ${ }^{3,4}$ Their development has brought significant improvements in column efficiency and thereby increases in resolution, throughput, sensitivity, etc. Core-shell particles, sometimes also referred to as fused-core silica stationary phases, ${ }^{5}$ are made by fusing $a<0.5 \mu \mathrm{~m}$ porous
silica layer, which is functionalized with a bonded phase such as $\mathrm{C}_{18}, \mathrm{C}_{8}$, etc. to $<2 \mu \mathrm{~m}$ nonporous or solid silica cores. The reduced intraparticle flow path of the fused particles provides superior mass transfer kinetics and better performance at high mobile phase velocities, while the core-shell particles provide lower pressure than sub- $2 \mu \mathrm{~m}$ particles. ${ }^{5}$ For example, Kinetex C_{18} core-shell $2.6 \mu \mathrm{~m}$ particles used in this study were made of a $0.35 \mu \mathrm{~m}$ porous shell fused to a $1.9 \mu \mathrm{~m}$ solid core. Kinetex core-shell columns can operate on conventional LC systems with significant reductions in analytical run time and provide ultrahigh column efficiency in separation, which was close to sub$2 \mu \mathrm{~m}$ column chromatographic efficiency. ${ }^{6}$

In this paper, we present a study comparing $2.6 \mu \mathrm{~m}$ core - shell particles (Kinetex C_{18}) and $3 \mu \mathrm{~m}$ porous particles (Atlantis dC_{18}) columns for the determination of 151 pesticides in grains using the QuEChERs method. The methods were validated according to a designed experiment, that is, a nested design, ${ }^{7,8}$ to evaluate its performance characteristics including overall recovery, intermediate precision, and measurement uncertainty for routine sample monitoring program.

■ MATERIALS AND METHODS

Materials and Reagents. Seven different whole grain matrices (pesticides free) for method development and validation, which

Received: May 30, 2011
Accepted: July 21, 2011
Revised: July 15, 2011
Published: August 03, 2011
included barley, basmati rice, rice flour, popcorn, wheat, seven grains, and buckwheat, were obtained from local markets. The individual grain samples were homogenized using a blender, and 500 g of each grain sample was prepared. One hundred grain samples ($500-1000 \mathrm{~g}$ per sample) for a pilot study were also purchased from local supermarket stores. All samples were stored at room temperature. Ammonium acetate (reagent grade), LC-MS water (Chromasolv, 1 L), and LC-MS acetonitrile (Chromasolv, 2.5 L) were purchased from Sigma-Aldrich Corp. (Canada). ENVIRO CLEAN extraction columns [6.0 g of anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ and 1.5 g of sodium acetate, 50 mL centrifuge tubes] and ENVIRO CLEAN extraction columns [900 mg of $\mathrm{MgSO}_{4}, 150 \mathrm{mg}$ of C_{18}, and 300 mg of primary secondary amine (PSA), 15 mL centrifuge tubes] were from United Chemical Technologies, Inc. (Bristol, PA). Acetic acid (glacial acetic acid, reagent grade, 99.7%), acetonitrile (distilled in glass), and methanol (distilled in glass) were obtained from Caledon Laboratories Ltd. (Canada). Water used for reagent and sample preparation was Milli-Q water, $18 \mathrm{M} \Omega \mathrm{cm}$ from Milli-Q Reagent Water System (Millipore Corp., United States). Sodium acetate anhydrous (ACS reagent) was from Thermo Fisher Scientific Inc. (Canada). Pesticides standards (Table 1, column 1) were obtained from EQ Laboratories Inc. (United States), Riedel-de Haen AG (Germany), or Chem Service (United States). Internal standards carbendazim- d_{4} and carbofuran- d_{3} were purchased from EQ Laboratories Inc. (United States), and thiabendazole- d_{4} was from Chemical Synthesis Services (Northern Ireland). LC vials were Mini-UniPrep syringeless filter device with polypropylene housing and PVDF $0.45 \mu \mathrm{~m}$ membrane (Whatman Inc., United States).

Preparation of Standards Solutions. Individual pesticide standard stock solutions were generally prepared in a concentration of $4000.0 \mu \mathrm{~g} / \mathrm{mL}$ in methanol. Because of their poor solubility in methanol, carbendazim was prepared at $200.0 \mu \mathrm{~g} / \mathrm{mL}$, and a few of pesticides were prepared at 1000.0 or $2000.0 \mu \mathrm{~g} / \mathrm{mL}$ (Table 1, column 1). An intermediate pesticide standard mix working solution was prepared as $10.0 \mu \mathrm{~g} / \mathrm{mL}$ from stock solutions. Stock and intermediate solutions were stored at $-20^{\circ} \mathrm{C}$. Six-level pesticide standard mix working solutions were prepared by transferring $0.1,0.5,2.0,4.0,6.0$, and 10.0 mL of $10.0 \mu \mathrm{~g} / \mathrm{mL}$ intermediate working solution into six separate 50 mL volumetric flasks and making them up to volume with methanol to prepare $0.02,0.1,0.4,0.8,1.2$, and $2.0 \mu \mathrm{~g} / \mathrm{mL}$ six-level standard solutions. They were used for constructing matrix-matched standard calibration curves. Four-level sample spike pesticide standard working solutions were prepared by transferring $1.0,9.0,24.0$, and 40.0 mL of $10.0 \mu \mathrm{~g} / \mathrm{mL}$ intermediate working solution into separate 50 mL volumetric flasks and making them up to volume with methanol to prepare $0.2,1.8,4.8$, and $8.0 \mu \mathrm{~g} / \mathrm{mL}$ four-level standard solutions for sample spikes. Internal standard working solutions $(2.0 \mu \mathrm{~g} / \mathrm{mL})$ including carbofuran $-d_{3}$, carbendazim- d_{4}, and thiabendazole- d_{4} were prepared in a mixture of acetonitrile and methanol (50:50, v/v). All working solutions were stored at $4{ }^{\circ} \mathrm{C}$.

Preparation of Reagent Solutions. Acetonitrile/acetic acid $(99+1, \mathrm{v} / \mathrm{v})$ was prepared by mixing 990 mL of acetonitrile with 10 mL of acetic acid. Ammonium acetate (0.1 M) was prepared by weighing 7.7 g of ammonium acetate and dissolving it in approximately 800 mL of water. After it was transferred into a 1000 mL volumetric flask, the solution was made up to the volume with water. The solvent buffer was a mixture of 0.1 M ammonium acetate and methanol $(50+50, \mathrm{v} / \mathrm{v})$.

LC/ESI-MS/MS Parameters. The LC/ESI-MS/MS system utilized was an Agilent 1200 SL (Agilent, Germany) coupled with an API 5000 LC/MS/MS System (Applied Biosystem, Canada). The system was controlled using the Analyst 1.5 software. The mobile phase B was acetonitrile, and the mobile phase A was 10 mM ammonium acetate with 2% acetonitrile in water. The column oven temperature was set at $35^{\circ} \mathrm{C}$, and the autosampler temperature was set at $5^{\circ} \mathrm{C}$.

Core-Shell Particle Column. The core-shell particle or UHPLC column utilized was a Kinetex $\mathrm{C}_{18}, 100 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 2.6 \mu \mathrm{~m}$ column (Phenomenex, United States). The injection volume was $3 \mu \mathrm{~L}$, when not specified, and the total run time was 12 min .

Porous Particle Column. The porous particle or conventional LC analytical column was an Atlantis $\mathrm{dC}_{18}, 100 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 3 \mu \mathrm{~m}$ column (Waters, United States), and the guard column was an Atlantis $\mathrm{dC}_{18}, 10 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 3 \mu \mathrm{~m}$ column (Waters). The injection volume was $5 \mu \mathrm{~L}$, and the total run time was 35 min . Both conventional LC and UHPLC gradient profiles are shown in Table 2.

MS/MS Conditions. The ion source was TurboIonSpray or Turbo V electrospray ion source in positive mode. General mass spectrometric parameters are shown in Table 2. The pause time between mass ranges was 5 ms . Specific mass spectrometric parameters such as dwell time, declustering potential (DP), entrance potential (EP), collision energy (CE), collision cell exit potential (CXP), and multiple reaction monitoring transitions (MRM or Q1 and Q3) are listed in Table 1. Parameters such as DP, EP, CE, and CXP were optimized using the Quantitative Optimization bundled with the Analyst software by infusing each individual pesticide standard (10 or $50 \mu \mathrm{~g} / \mathrm{L}$) to the mass spectrometer. The syringe pump (Harvard Apparatus, United States) flow rate was set at $10 \mu \mathrm{~L} / \mathrm{min}$ for infusion. For LC (Atlantis dC_{18}) column, nonscheduled MRM was used; that is, MRMs were acquired in one experiment period. The total scan time was 1.6211 s , and the duration was 24 min . For UHPLC (Kinetex C_{18}) column, when not specified, a scheduled MRM was used according to the retention time with a MRM detection window of 100 s . The total scan time was 1.6211 s , and the duration was 11 min .

Sample Extraction and Cleanup Procedures. Sample extraction and cleanup procedures followed the buffered QuEChERS ${ }^{2}$ or AOAC Official Method 2007.01^{9} with a slight modification. For the fortification experiment, grain samples ($5.0 \mathrm{~g} /$ sample) were weighed into individual 50 mL polypropylene centrifuge tubes (VWR International, Canada). Two hundred fifty microliters per four-level sample spike pesticide standard working solution was added into four centrifuge tubes to provide $10.0,90.0,240.0$, and $400.0 \mu \mathrm{~g} / \mathrm{kg}$ of pesticides equivalent in samples. To each tube, $250 \mu \mathrm{~L}$ of $2.0 \mu \mathrm{~g} / \mathrm{mL}$ internal calibration standard working solution $(100.0 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in samples) was added along with 15 mL of water. Tubes were capped, mixed, and allowed to stand for 30 min at room temperature for the purpose of hydration. Then, 15 mL of acetonitrile/acetic acid $(99+1, \mathrm{v} / \mathrm{v})$ was added to individual samples and mixed, followed by the addition of 1.5 g of anhydrous sodium acetate and 6.0 g of anhydrous magnesium sulfate from ENVIRO CLEAN extraction columns. The centrifuge tubes were capped, shaken again for 45 s by hand, and then centrifuged at $3000 \mathrm{rpm}(\sim 2100 \mathrm{~g})$ for 3 min using an Allegra 6 centrifuge (Beckman Coulter Inc., United States). Supernatants were transferred ($6 \mathrm{~mL} /$ sample) into individual 15 mL polypropylene centrifuge tubes, that is, ENVIRO CLEAN extraction columns, which contain 900 mg of MgSO_{4}, 150 mg of C_{18}, and 300 mg of PSA. The centrifuge tubes were capped, shaken for 45 s , and centrifuged at $3000 \mathrm{rpm}(\sim 2100 \mathrm{~g})$ for 3 min . Three milliliters of supernatants (1 g sample $/ 3 \mathrm{~mL}$) were transferred into individual 5 mL Pyrex brand centrifuge tubes, precalibrated with 1 mL volume accuracy (VWR International). Each of the sample extracts was evaporated to $0.1-0.2 \mathrm{~mL}$, which took approximately 45 min , using an N-EVAP nitrogen evaporator (Organomation Associates Inc., United States) at $30^{\circ} \mathrm{C}$ under a stream of nitrogen. The extracts were made up to 0.5 mL with methanol, vortexed for 30 s , and then made up to 1.0 mL with 0.1 M ammonium acetate and vortexed again for 30 s . One hundred microliters of each extract was transferred into a Mini-UniPrep vial (Whatman Inc.), and $500 \mu \mathrm{~L}$ of solvent buffer was added. The vials were capped, vortexed for 30 s , and pressed to filter. Sample extracts were analyzed by LC/ESI-MS/MS injection.
Table 1. LC/ESI-MS/MS Parameters and Method Performance Results

pesticides	ionization	$\begin{gathered} \text { Q1 } \\ \text { mass } \\ (\mathrm{amu}) \end{gathered}$	$\begin{gathered} \mathrm{Q} 3 \\ \text { mass }^{a} \\ (\mathrm{amu}) \end{gathered}$	$\begin{aligned} & \text { DP } \\ & (\mathrm{V}) \end{aligned}$	$\begin{aligned} & \text { EP } \\ & (\mathrm{V}) \end{aligned}$	$\begin{aligned} & \text { CE } \\ & (\mathrm{V}) \end{aligned}$	$C E^{b}$ (V)	$\begin{aligned} & \text { CXP } \\ & \text { (V) } \end{aligned}$	Kinetex C_{18} column					Atlantis dC_{18} column				
									$\begin{aligned} & \text { retention } \\ & \text { time } e^{c} \\ & (\mathrm{~min}) \end{aligned}$	$\begin{aligned} & \mathrm{LCL} \\ & \mathrm{~S} / \mathrm{N} \\ & \mathrm{PtP}{ }^{d} \end{aligned}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)	$\begin{gathered} \text { retention } \\ \text { time }^{c} \\ (\min) \end{gathered}$	$\begin{gathered} \text { LCL S/N } \\ \text { PtP }^{d} \end{gathered}$	$\begin{aligned} & \text { overall }_{\text {recovery }}{ }^{k} \\ & (\%) \end{aligned}$	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)
$\begin{aligned} & 1^{e} \\ & \text { abamectin } \mathrm{B}_{1 \mathrm{a}}{ }^{e} \end{aligned}$	2	3	4	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	$[\mathrm{M}+\mathrm{H}]^{+}$	891	305	111	10	37	37	30	6.6	30	96.5	19.5	39.3	12.26	13(25)	$96.5{ }^{f}$	14.5	30.7
		891	567	111	10	21		28										
		891	113	111	10	69		14										
acetochlor	$[\mathrm{M}+\mathrm{H}]^{+}$	270	224	66	10	15	15	14	5.41	14	94.5	8.4	16.9	9.58	7	95.3	11.6	23.3
		270	148	66	10	29		20										
		270	133	66	10	47		16										
aclonifen ${ }^{e}$	$[\mathrm{M}+\mathrm{H}]^{+}$	265	182	101	10	41	41	24	5.53	$\underline{6}$ (100)	99.0^{g}	18.6	43.8	9.78	6(100)	$98.6{ }^{\text {g }}$	22.8	45.8
		265	218	101	10	35		22										
		265	194	101	10	27		18										
aldicarb	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	208	116	26	10	13	13	16	3.94	55	99.4	9.5	19.2	7.21	34	98.0	15.4	31.0
		208	89	26	10	25		16										
		208	70	26	10	21		14										
aldicarb sulfone	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	240	86	51	10	31	31	20	2.55	29	99.1	6.8	13.9	5.08	5	98.9	11.2	22.5
		240	148	51	10	21		14										
		240	76	51	10	19		30										
aldicarb sulfoxide	$[\mathrm{M}+\mathrm{H}]^{+}$	207	132	86	10	11	11	16	1.76	97	96.0	6.4	13.0	4.26	9	97.5	9.1	19.2
		207	89	86	10	21		14										
		207	41	86	10	49		18										
azaconazole	$[\mathrm{M}+\mathrm{H}]^{+}$	300	159	76	10	41	$\underline{27}$	10	4.51	26	99.2	7.0	15.6	8.08	22	100.0	7.2	14.4
		300	231	76	10	25		14										
		300	89	76	10	97		34										
benoxacor ${ }^{\text {e }}$	$[\mathrm{M}+\mathrm{H}]^{+}$	260	149	76	10	29	29	22	5.09	5(25)	$98.8{ }^{f}$	10.1	22.6	9.05	6(25)	$99.0{ }^{\text {f }}$	12.0	24.0
		260	134	76	10	43		12										
		260	120	76	10	49		14										
bitertanol	$[\mathrm{M}+\mathrm{H}]^{+}$	338	99	61	10	23	23	12	5.26	34	97.1	11.1	27.6	9.34	15	97.2	11.7	29.9
		338	70	61	10	31		26										
		338	43	61	10	59		16										
bromuconazole	$[\mathrm{M}+\mathrm{H}]^{+}$	376	159	91	10	37	37	10	5.04	15	96.4	9.1	19.6	9.00	10	96.9	9.6	20.0
		376	70	91	10	31		28										
		376	89	91	10	123		12										
butafenacil	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	492	331	46	10	33	$\underline{15}$	34	5.42	40	97.8	13.2	26.5	9.49	35	101.4	12.2	24.6
		492	180	46	10	61		18										
		492	349	46	10	23		18										
butocarboxim sulfoxide	$[\mathrm{M}+\mathrm{H}]^{+}$	207	75	86	10	21	21	30	1.61	173	92.7	5.7	11.9	3.82	17	91.7	7.8	17.1
		207	132	86	10	13		6										
		207	43	86	10	31		16										
cadusafos	$[\mathrm{M}+\mathrm{H}]^{+}$	271	159	81	10	21	12	10	5.74	26	96.7	10.0	20.2	10.16	38	95.3	9.8	19.7
		271	131	81	10	33		16										
		271	97	81	10	49		12										
carbaryl	$[\mathrm{M}+\mathrm{H}]^{+}$	202	145	91	10	17	17	18	4.47	14	100.4	7.3	14.9	8.04	12	99.4	10.1	20.2
		202	127	91	10	43		16										

		$\begin{aligned} & 0 \\ & \dot{n} \end{aligned}$		$\underset{ \pm}{ \pm}$		へ̀	$\frac{n}{n}$	$\underset{\sim}{\underset{\sim}{c}}$	$\underset{\sim}{\infty}$	$\stackrel{9}{n}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$	$\overrightarrow{~ N}$	$\underset{\sim}{\infty}$	ત̀	＋	$\stackrel{3}{7}$
		$\stackrel{\infty}{\sim}$		$\underset{\sim}{\sim}$		\cdots	$\hat{0}$	$\overrightarrow{\mathrm{I}}$	$\stackrel{\text { Y }}{ \pm}$	$\stackrel{9}{2}$	$\stackrel{+}{\infty}$	0	$\underset{\Omega}{\mathrm{I}}$	$\stackrel{?}{=}$	$\stackrel{\rightharpoonup}{\infty}$	－
		$\underset{\infty}{\infty}$		N్ તે		$\underset{\sim}{n}$	$\underset{\sim}{\infty}$	Nூ.	$\stackrel{0}{\infty}$	$\hat{\sim}$	$\underset{\infty}{0}$	$\underset{\sim}{n}$	$\underset{\infty}{\infty}$	\vec{n}	$\stackrel{\text {＂1 }}{\square}$	－${ }_{\text {O}}$
	$\begin{aligned} & Z \\ & \omega \\ & \underset{y}{\omega} \end{aligned}$	N		N		m	$\underset{i n}{i}$	\pm	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{7}$	n	ช	\pm	\sim	$\underbrace{\text { ¢ }}_{\text {त1 }}$	च
		సิ	તֶ	$\underset{\sim}{\infty}$	$\stackrel{\imath}{\wedge}$	$\stackrel{\circ}{\circ}$	Ǹ	$\stackrel{\text { O}}{6}$	$\stackrel{\text { O}}{6}$	$\stackrel{\rightharpoonup}{\infty}$	$\underset{\sim}{\star}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { ㅇ } \\ & \text { O } \end{aligned}$	N్ర	O－	$\frac{\sim}{2}$
		ぶ		$\stackrel{\sim}{\sim}$		$\stackrel{\infty}{\varrho}$	$\stackrel{-}{\mathrm{N}}$	$\underset{\sim}{\text { ণ }}$	$\stackrel{\sim}{n}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\underset{\sim}{\underset{\sim}{2}}}{\substack{2}}$	$\begin{aligned} & 0 \\ & \text { त̀ } \end{aligned}$	$\underset{\sim}{\underset{\sim}{+}}$	$\stackrel{0}{\mathrm{O}}$	－	$\stackrel{m}{\text { en }}$
		$\stackrel{\circ}{i}$		$\stackrel{\square}{\sim}$		\bigcirc	$\stackrel{n}{n}$	$\stackrel{n}{=}$	$\begin{aligned} & \text { O } \\ & \text { I } \end{aligned}$	$\overrightarrow{0}$	$\widehat{0}$	0	$\stackrel{\rightharpoonup}{n}$	\pm	$\stackrel{+}{\sim}$	$\stackrel{\sim}{ \pm}$
		$\begin{aligned} & \circ \\ & \dot{\circ} \end{aligned}$		$\overrightarrow{0}$		$\underset{\sim}{\dot{n}}$	$\begin{aligned} & \infty \\ & \dot{+} \\ & \dot{\square} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\underset{\infty}{0}$	$\hat{\circ}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{N}$	$\stackrel{\mathrm{N}}{\mathrm{O}}$	$\begin{aligned} & \infty \\ & \dot{n} \end{aligned}$	＂	ف̇
	家 Z	$\stackrel{\sim}{\square}$		\bigcirc		N	$\underset{\infty}{\underset{0}{8}}$	～	$\stackrel{\text { }}{\sim}$	＊	in	ก	in	os	$\underset{\sim}{\underset{\sim}{n}}$	\triangle
		$\stackrel{\text { ? }}{\substack{1 \\ \hline}}$	$\underset{\sim}{\underset{\sim}{7}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{r}$	in	$\stackrel{\rightharpoonup}{i}$	$\underset{\sim}{\ddagger}$	$\begin{aligned} & \overrightarrow{0} \\ & \dot{m} \end{aligned}$	$\begin{gathered} \underset{i}{2} \\ i \end{gathered}$	$\stackrel{\underset{\sim}{\mathrm{Y}}}{+}$	$\stackrel{0}{i}$	$\stackrel{\circ}{\circ}$	$\stackrel{M}{m}$	$\begin{aligned} & \pm \\ & i \end{aligned}$	$\stackrel{\odot}{+}$

体正으으으으으으으으으으으으으으으으으으으 으으으으으으으으

							Kinetex C_{18} column					Atlantis dC_{18} column				
$\underset{\substack{\text { mass } \\(\text { amu }}}{\substack{\text { and }}}$	$\begin{gathered} \mathrm{Q}^{\mathrm{Q}} \mathrm{mas}^{\mathrm{m}} \\ (\mathrm{amu}) \end{gathered}$	$\begin{aligned} & \text { DP } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { EP } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { CE } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{CE}^{b} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { Cxp } \\ & \text { (V) } \end{aligned}$	retention time ${ }^{c}$ (min)	$\begin{aligned} & \mathrm{LCL} \\ & \mathrm{~S} / \mathrm{N} \\ & \mathrm{Ptp} \mathrm{~N}^{d} \end{aligned}$	overall recovery ${ }^{k}$ (\%)	(\%) $\begin{gathered} \hline \text { intermediate } \\ \text { precision } l \\ (\%) \end{gathered}$	measurement uncertainty ${ }^{m}$ (\%)	retention time ${ }^{c}$ (min)	$\underset{\text { PtP }^{d}}{\mathrm{LCLS}}$	$\begin{gathered} \text { overall } \\ \text { recovery }{ }^{k} \end{gathered}$ (\%)	intermediate precision (\%)	measurement uncertainty ${ }^{m}$ (\%)
326	180	111	10	29		26										
326	101	111	10	33		22										
199	89	86	10	23	15	10	4.44	45	97.1	7.0	14.0	7.99	37	96.3	7.7	15.5
199	72	86	10	33		12										
199	69	86	10	31		16										
167	43	76	10	57	57	18	1.42	24	62.2	9.1	25.3	3.3	3	65.5	9.8	30.9
167	68	76	10	49		14										
167	60	76	10	29		24										
263	169	111	10	23	23	10	2.98	83	98.9	5.4	10.9	5.57	50	99.1	8.2	16.6
263	127	111	10	37		14										
263	109	111	10	41		12										
247	169	86	10	21	13	4	2.51	179	96.5	5.4	11.2	4.89	118	93.5	7.4	16.1
247	127	86	10	37		16										
247	105	86	10	21		12										
301	182	116	10	15	19	10	4.92	119	97.1	9.3	18.6	8.71	92	100.7	11.4	23.0
301	136	116	10	35		8										
301	65	116	10	77		26										
313	173	116	10	25	25	24	5.42	10(25)	$96.1{ }^{f}$	9.4	19.2	9.54	4	98.5	12.3	25.1
313	137	116	10	47		12										
313	102	116	10	63		12 14		12	98.4	8.1	162	8.91	5	983	74	15.4
268	226 124	61 61	10 10	17 45	23	14 14	5.01									15.4
268	152	61	10	31		20										
406	251	136	10	39	22	26	5.55	445	96.7	13.4	31.9	9.85	45	98.2	13.9	27.9
406	337	136	10	25		26										
406	188	136	10	49		26										
256	186	121	10	31		30	5.43	12	88.9	13.2	28.3	9.58	10	89.6	14.8	30.4
256	$\frac{91}{96}$	121	10	43	31	14										
256	96	121	10	45		12										
388 388	301 165	76 76	10	31 45	17	16 10	4.82	60	98.3	8.2	16.5	8.57	67	97.5	9.0	18.1
388	152	76	10	99		20										
326	70	136	10	37	31	28	5.4	41	95.2	9.8	20.0	9.58	24	95.6	9.9	22.6
326	43	136	10	105		16										
326 224	159	136 96	10	47 25	25	20 16	3.53	29	99.3	7.6	15.2	6.54	48	99.8	8.8	17.6
224	167	96	10	15		10										
224	95	96	10	39		12										
256	144	101	10	41		14	5.52	11	90.5	15.5	31.1	9.73	5	90.6	13.1	26.2
256	214	101	10	29	17	22										
256	102	101	10	53		12										
233	72	56	10	35	35	28	4.58	5	99.9	7.5	15.8	8.18	5	102.2	7.3	17.4

+
茕
+
$\sum_{<}$

desmedipham
diclocymet e
diethofencarb
demeton-S-
methyl
\quad sulfoxide
difenoconazole
dimethametryn

$\begin{gathered} \text { CXP } \\ \text { (V) } \end{gathered}$	Kinetex C_{18} column					Atlantis dC_{18} column				
	$\begin{gathered} \text { retention } \\ \text { time } e^{c} \\ (\mathrm{~min}) \end{gathered}$	$\begin{aligned} & \mathrm{LCL} \\ & \mathrm{~S} / \mathrm{N} \\ & \mathrm{PtP}^{d} \end{aligned}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)	$\begin{gathered} \text { retention } \\ \text { time }^{c} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { LCL S/N } \\ \text { PtP }^{d} \end{gathered}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)
18										
16	9.21	51	75.0	$\underline{28.8}$	62.6	18.70	63(25)	$76.5{ }^{\text {f }}$	$\underline{23.5}$	$\underline{49.8}$
14										
16										
18	6.87	20	97.0	20.6	55.3	15.49	16	95.0	22.3	52.8
10										
14										
24	5.09	33	97.0	10.8	24.0	9.05	29	94.6	12.0	38.3
8										
20										
14	4.57	13	89.2	7.3	30.3	8.18	9	90.6	9.3	34.4
10										
16										
14	3.35	23	98.4	8.6	17.3	6.20	10	100.0	9.7	21.1
0										
32										
18	3.06	282	107.3	5.8	18.1	5.62	86	106.1	8.7	22.6
32										
32										
20	3.93	17	88.0	11.3	22.7	7.02	10	88.4	10.8	24.0
14										
16										
14	5.2	9	96.4	7.9	15.8	9.25	19	93.7	9.7	20.0
12										
10										
18	7.17	11	119.3	50.3	113.0	12.83	15(25)	$102.3{ }^{f}$	37.1	74.6
26 - - - - - - -										
12										
14	6.46	30	102.7	18.0	47.5	11.47	17	99.9	21.1	47.0
34										
12										
10	5.11	69	93.5	7.4	19.3	9.00	105	98.2	7.9	16.6
20										
14										
14	6.52	35	102.7	33.7	82.3	11.76	8	96.1	29.1	65.6
18										
20										
20	5.11	45	90.3	8.7	20.2	9.05	5	92.9	10.1	20.3
14										
14										
28	5.51	5	97.3	10.3	22.7	9.73	12	95.8	11.1	25.3
36										
20										

							Kinetex C_{18} column					Atlantis dC_{18} column				
$\begin{gathered} \mathrm{Q} 1 \\ \text { mass } \\ (\mathrm{amu}) \end{gathered}$	$\begin{gathered} \mathrm{Q} 3 \\ \text { mass }^{a} \\ (\mathrm{amu}) \end{gathered}$	$\begin{aligned} & \text { DP } \\ & (\mathrm{V}) \end{aligned}$	$\begin{aligned} & \text { EP } \\ & (\mathrm{V}) \end{aligned}$	$\begin{aligned} & \text { CE } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{CE}^{b} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { CXP } \\ & \text { (V) } \end{aligned}$	retention time ${ }^{c}$ (min)	$\begin{aligned} & \mathrm{LCL} \\ & \mathrm{~S} / \mathrm{N} \\ & \mathrm{PtP}^{d} \end{aligned}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)	$\begin{gathered} \text { retention } \\ \text { time }^{c} \\ (\min) \end{gathered}$	$\begin{gathered} \text { LCL S/N } \\ \text { PtP }^{d} \end{gathered}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)
274	147	76	10	39	29	8	5.86	8	91.5	19.9	45.3	12.45	3	91.0	18.4	39.1
274	117	76	10	73		16										
274	86	76	10	41		10										
304	147	76	10	45	28	14	7.45	21	93.9	43.8	94.9	13.65	9	87.9	21.6	51.5
304	117	76	10	81		16										
304	91	76	10	113		12										
422	366	126	10	27	9	36	6.42	38	108.3	20.7	68.4	11.42	29	104.6	22.6	62.1
422	135	126	10	45		20										
422	107	126	10	81		12										
350	154	111	10	17	17	16	5.71	27	96.5	12.0	25.5	10.07	40	93.9	13.4	33.0
350	83	111	10	35		16										
350	197	111	10	13		24										
384	282	121	10	31	17	18	6.17	76	104.1	16.1	39.9	10.79	15	101.1	16.6	36.6
384	328	121	10	25		30										
384	91	121	10	49		10										
414	130	46	10	35	35	18	3.1	44	63.2	25.8	51.9	5.56	25	68.2	27.1	55.6
414	115	46	10	49		18										
414	73	46	10	49		30										
324	262	111	10	27	$\underline{17}$	14	5.33	57	92.5	7.7	20.1	9.39	61	94.8	8.1	18.5
324	242	111	10	35		12										
324	65	111	10	63		30										
302	70	96	10	25	17	14	4.41	50	95.7	8.5	17.1	7.89	22	98.2	8.2	16.5
302	123	96	10	37		16										
302	75	96	10	110		32										
248	129	31	10	27	18	14	4.46	56	95.8	8.2	17.0	7.94	41	93.8	8.2	17.6
248	93	31	10	49		18										
248	111	31	10	47		14										
284	104	86	10	33	$\underline{16}$	24	4.47	89	100.3	7.5	16.0	7.99	44	99.9	7.7	15.4
284	228	86	10	17		22										
284	200	86	10	25		10										
185	157	96	10	33	19	14	3.81	8	93.2	8.4	19.1	6.87	8	96.2	10.5	31.4
185	156	96	10	43		22										
185	65	96	10	49		14										
383	195	121	10	29	13	18	6.13	33	93.9	11.0	24.0	10.79	42	91.9	12.5	25.9
383	167	121	10	39		22										
383	162	121	10	49		16										
362	316	121	10	29	29	36	3.87	9	54.1	28.8	59.7	6.73	11	54.7	32.9	70.3
362	91	121	10	43		16										
362	288	121	10	39		28										
255	163	46	10	27		16	3.36	15	97.4	7.5	16.3	6.20	10	97.7	11.6	24.1
255	220	46	10	17	17	12										
255	181	46	10	23		18										
289	144	66	10	49	30	10	4.04	53	99.0	8.1	16.2	7.26	37	102.5	11.0	26.7
289	86	66	10	33		18										

[^0]| pesticides | ionization |
| :---: | :---: |
| fenpropidin | [$\mathrm{M}+\mathrm{H}]^{+}$ |
| fenpropimorph | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| fenpyroximate ${ }^{i}$ | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| fentrazamide | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| fluazifop-butyl | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| flucarbazone | $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ |
| flutolanil | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| flutriafol | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| forchlorfenuron | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| fosthiazate | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| fuberidazole | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| furathiocarb | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| haloxyfop | $[\mathrm{M}+\mathrm{H}]^{+}$ |
| 3-hydroxycarbofuran | $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ |
| imazamethabenz methyl | $[\mathrm{M}+\mathrm{H}]^{+}$ |

Kinetex C_{18} column					Atlantis dC_{18} column				
$\begin{gathered} \text { retention } \\ \text { time } \\ (\mathrm{min}) \end{gathered}$	$\begin{aligned} & \mathrm{LCL} \\ & \mathrm{~S} / \mathrm{N} \\ & \mathrm{PtP}^{d} \end{aligned}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)	```retention time }\mp@subsup{}{}{c (min)```	$\begin{aligned} & \mathrm{LCL} \mathrm{S/N} \\ & \mathrm{PtP}^{d} \end{aligned}$	overall recovery ${ }^{k}$ (\%)	intermediate precision ${ }^{l}$ (\%)	measurement uncertainty ${ }^{m}$ (\%)
3.45	11	98.4	8.9	18.7	6.34	18	99.0	11.4	22.9
5.83	47	101.6	14.4	29.9	10.16	47	101.0	13.8	31.5
5.03	116	100.3	11.3	22.8	8.86	126	99.2	8.1	16.3
3.34	47	96.8	10.0	21.0	6.15	17	96.9	7.7	16.3
4.68	5	98.8	8.7	17.5	8.37	3	98.4	8.0	16.7
5.86	472 (25)	$110.2{ }^{f}$	16.6	34.5	10.31	12(25)	$108.3{ }^{f}$	14.7	33.4
5.02	$\underline{9}$ (25)	$98.4{ }^{f}$	8.6	18.3	9.18	3	98.1	10.8	22.1
5.31	20	89.5	11.2	31.3	9.39	11	91.0	11.1	28.4
3.99	54	100.0	6.2	12.7	7.21	56	99.2	6.7	13.4
4.37	9	94.9	11.8	23.7	7.84	8	96.0	7.7	15.5
5	24	93.5	11.7	32.3	9.14	19	95.3	12.7	33.9
4.96	24	97.0	8.6	17.2	8.81	18	96.0	7.8	16.0
3.76	9	94.2	8.5	24.0	6.87	3	96.4	11.4	29.4
3.24	233	96.9	7.3	18.4	5.91	46	93.7	12.9	26.5

 overall intermediate measurement

		$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { ద్ర. } \\ & \hline \end{aligned}$	$\underset{\dot{f}}{ }$	N゙	$\stackrel{0}{\underset{\sim}{~}}$	$\begin{aligned} & \text { તi } \\ & \text { ה } \end{aligned}$	$\underset{\sim}{\text { ণ }}$	$\begin{aligned} & 0 \\ & \dot{n} \end{aligned}$	$\stackrel{+}{\sim}$	そ	ล̀	ત̀	$\underset{\text { ホ }}{\underset{\sim}{n}}$	$\stackrel{\substack{\infty \\ \sim \\ \sim}}{ }$	$\stackrel{0}{0}$
$\frac{1}{0}$		ホ	$\stackrel{\forall}{\exists}$	$\overrightarrow{\text { त }}$	$\stackrel{0}{n}$	$\xlongequal{\cong}$	$\stackrel{\mathrm{Y}}{=}$	$\overrightarrow{\mathrm{I}}$	$\underset{\sim}{n}$	a	$\stackrel{\square}{6}$	0	$\stackrel{\infty}{0}$	$\underset{\text { N }}{ }$	\vec{i}	ă
$\begin{aligned} & \text { U } \\ & \text { n } \\ & \text { In } \\ & \text { In } \end{aligned}$		$\begin{aligned} & 0 \\ & \dot{O} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{~}}$	$\stackrel{\infty}{-1}$	$\underset{\sim}{n}$	\vec{n}	寸ু	$\hat{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{0}{\mathrm{i}}$	$\overrightarrow{2}$	$\underset{\infty}{\infty}$	シٌ	ఠুఠ	－	へু
		\cdots	－	\bigcirc	－	～2	\cdots	$\stackrel{\sim}{\sim}$	${ }_{\text {O1 }}^{0}$	¢	～	∞^{∞}	\cdots	\ddagger		＋
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\square}{6}$	$\begin{aligned} & 20 \\ & 0 \\ & \hline 1 \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\alpha}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & \widehat{\infty} \\ & \dot{6} \end{aligned}$	$\begin{aligned} & \text { ㅇ } \\ & \text { O } \end{aligned}$	$\stackrel{\infty}{+}$	$\stackrel{\imath}{\wedge}$	$\underset{+}{\dot{+}}$	Ö	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { oे } \\ & \underset{\sim}{4} \end{aligned}$	$\stackrel{\sim}{2}$
		Ǹ	-	$\overrightarrow{\underset{子}{2}}$	Nò	તે	$\stackrel{\bullet}{\beth}$	N゙	$\underset{\sim}{\underset{\sim}{+}}$	$\underset{\sim}{\lambda}$	$\stackrel{\underset{\sim}{n}}{n}$	ָ̇	$\stackrel{\Im}{\sim}$	$\begin{aligned} & \mathrm{O} \\ & \text { Ǹ } \end{aligned}$	O－	－
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$		$\stackrel{N}{\rightrightarrows}$	$\underset{O}{\dot{O}}$	$$	$\stackrel{O}{-}$	$\stackrel{0}{0}$	$\stackrel{\infty}{\circ}$	B	N	\sim	$\stackrel{\sim}{\sim}$	ぶ	$\stackrel{0}{0}$	$\stackrel{\bigcirc}{-1}$	$\underset{i}{0}$	$\stackrel{+}{\infty}$
$\begin{aligned} & u \\ & \text { U } \\ & \text { © } \\ & \text { N } \end{aligned}$		$\underset{\sim}{n}$	ふ̀	$\underset{\mathbf{O}}{\underset{\sim}{+}}$	$\underset{\alpha}{\grave{\alpha}}$	$\stackrel{m}{\alpha}$	$\stackrel{n}{\hat{a}}$	$\stackrel{n}{\infty}$	$\begin{aligned} & 0 \\ & 0 . \\ & 0 . \end{aligned}$	$\stackrel{n}{2}$	$\stackrel{0}{\infty}$	$\begin{gathered} n \\ \infty \\ \infty \end{gathered}$	$\stackrel{n}{\AA}$	$\underset{\sim}{n}$	ヘั่	＋
	它 Z	t	$\stackrel{\circ}{\text { ® }}$	ल	$\stackrel{\infty}{+}$	ช	\ddagger	岕	$\underset{\sim}{201}$	¢	N	0	N	－	¢	
		$\stackrel{\imath}{i}$	$\begin{aligned} & \tilde{j} \\ & \text { N} \end{aligned}$	in	$\stackrel{\infty}{i}$	in	$\stackrel{\circ}{i}$	$\stackrel{\circ}{\text { ๗ }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{i}{\lambda}$	$\stackrel{m}{7}$	$\stackrel{n}{n}$	$\stackrel{\rightharpoonup}{i}$	$\begin{aligned} & \infty \\ & i \\ & i \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{\square}{i}$

$\begin{array}{cc}+ \\ \text { 案 } & \text { 空 } \\ + & + \\ \vdots & \pm\end{array}$

$\begin{aligned} & \text { E } \\ & \text { E } \\ & 0 \\ & 0 \\ & U \\ & 0 \\ & 0 \\ & \text { E } \\ & \text { 采 } \end{aligned}$		$\begin{aligned} & 0 \\ & \text { ®i } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { ¿్ల } \end{aligned}$	ت़	$\stackrel{-}{\top}$	$\stackrel{+}{\sim}$	$\stackrel{0}{\dot{0}}$		$\stackrel{0}{\wedge}$	$\vec{\sim}$	\vec{a}	－	$\stackrel{\rightharpoonup}{\mathbf{N}}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{\circ} \end{aligned}$	ిం	n
			$\stackrel{0}{n}$	$\underset{\sim}{n}$	∞	$\hat{0}$	$\stackrel{\sim}{N}$		\bigcirc	\rightrightarrows	\cdots	$\stackrel{m}{\mathrm{~m}} \mid$	\cdots	$\xrightarrow{\text { N }}$	\cdots	$\hat{0}$
		$\stackrel{\circ}{\mathrm{a}}$	へ人	$\stackrel{\infty}{\underset{\alpha}{j}}$	$\begin{array}{\|l\|} \infty \\ \underset{\sim}{\mathrm{a}} \end{array}$	0 0 -1	$\stackrel{\circ}{\circ}$		ล̀	ふ̌	$\stackrel{\widehat{\infty}}{\hat{\infty}}$	$\stackrel{\infty}{\dot{a}} \mid$	$\underset{\alpha}{\kappa}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \end{aligned}$	N	さ
		\cdots	－	$\stackrel{\sim}{1}$	\sim	ત	\bigcirc		$\stackrel{\sim}{\sim}$	\cdots	8	윽		フ	～	N
		$\stackrel{\infty}{2}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{M}{\rightrightarrows}$	$\begin{aligned} & \mathfrak{6} \\ & 6 \end{aligned}$	n	$\stackrel{\infty}{0}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{0} \end{aligned}$	$\stackrel{\text { So }}{\sim}$	$\stackrel{\pi}{i}$	$\begin{aligned} & \text { O. } \\ & 0 \\ & \hline \end{aligned}$	n	$\stackrel{\infty}{\infty}$	$\stackrel{\text { O}}{6}$	\％ i	$\stackrel{\text { \％}}{\text { ® }}$
$$		$\begin{aligned} & \text { ત̀ } \\ & \text { ते } \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\underset{\sim}{\dot{\sim}}$	$\stackrel{\sim}{n}$	$\hat{\jmath}$	$\underset{\sim}{\underset{\sim}{r}}$		$\stackrel{7}{0}$	$\stackrel{0}{\mathrm{~N}}$	$\stackrel{?}{\wedge}$	｜	$\underset{\sim}{\Omega}$	$\stackrel{-1}{0}$	$\stackrel{0}{0}$	ヘ
		$\hat{0}$	$\stackrel{m}{9}$	$\stackrel{ \pm}{ \pm}$	$\stackrel{+}{\infty}$	\cdots	$\stackrel{\bullet}{6}$		$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\circ}$	\bigcirc	$\hat{\mathbf{e}} \mathbf{N}$	$\stackrel{\sim}{\sim}$	\bigcirc	0	$\stackrel{\sim}{\square}$
		\hat{n}	$\underset{\alpha}{\infty}$	そ	$\stackrel{\beth}{\square}$	N	$\begin{aligned} & -1 \\ & 0 \end{aligned}$		\sim	$\dot{\alpha}$	$\dot{\alpha}$	$\begin{array}{\|l\|} 0 \\ \text { ì } \end{array}$	$\stackrel{0}{\mathrm{O}}$	$\dot{\alpha}$	ふ̀	$\stackrel{0}{0}$
	家 Z	q	\cdots	9	तి	∞	ป		\ddagger	入	\cdots	∞		$\stackrel{\sim}{\sim}$	ๆ	N
		$\begin{aligned} & \stackrel{\circ}{4} \\ & i \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{-}{0}$	$\underset{n}{n}$	$\stackrel{ \pm}{i}$	$\stackrel{\rightharpoonup}{\dot{N}}$	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	○.	$\stackrel{\pi}{i}$	$\stackrel{\sim}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{n}$	$\stackrel{\rightharpoonup}{\mathrm{o}} \mathrm{i}$	\cdots

 pesticides
tebufenozide
tebufenpyrad
tebupirimfos
tepraloxydim
tetraconazole
thiabendazole
thiabendazole
d_{4}（IS）
thiacloprid
thiamethoxam

thiofanox ${ }^{e}$
thiofanox
sulfone
thiofanox
sulfoxide

Table 1．Continued

		$\stackrel{\underset{\sim}{r}}{\stackrel{1}{2}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{m}{2}$	\hat{e}	ત̀	గి	$\stackrel{\sim}{\infty}$	O.
$\frac{1}{0}$		$\underset{\mathbf{J}}{\substack{2}}$	\cdots	$\stackrel{\square}{\square}$	0	$\stackrel{\Im}{ \pm}$	0	$\stackrel{\sim}{\infty}$	\bigcirc
		$\underset{\sigma}{\square}$	$\stackrel{n}{j}$	$\begin{gathered} \text { N } \\ \text { ה̀ } \end{gathered}$	$\underset{\sim}{\dot{\alpha}}$	તૂ	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline 1 \end{aligned}$	గٌ
	$$	＋	$\stackrel{\sim}{\sim}$	N	ल	こ	$+$	$\xrightarrow[\substack{2}]{\substack{\text { a }}}$	～～
		$\vec{\lambda}$	$\stackrel{ \pm}{\vdots}$	$\underset{\sim}{w}$	$\underset{6}{\text { of }}$	$\stackrel{\infty}{\infty}$	$\underset{\infty}{\widehat{\infty}}$	$\underset{\infty}{\underset{\infty}{*}}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$
		$\stackrel{\infty}{\infty}$	\square	$\stackrel{0}{\stackrel{0}{1}}$	$\stackrel{n}{N}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	N゙	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{\square}{\square}$
		\square	\bigcirc	\cdots	\hat{O}	$\stackrel{\bigcirc}{ \pm}$	9	n	$\stackrel{\square}{0}$
		$\begin{aligned} & 0 \\ & \dot{n} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \underset{\alpha}{\mathrm{a}} \end{aligned}$	$\stackrel{\infty}{\underset{\sigma}{1}}$	$\stackrel{\underset{\sim}{2}}{2}$	ợ	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\text { İ }}{\substack{0}}$	$\stackrel{\sim}{N}$
		\bigcirc	$\stackrel{\sim}{\sim}$	\bigcirc	\cdots	9	\bigcirc	$\underset{n}{n}$	N゙
		$\stackrel{\rightharpoonup}{m}$	$\begin{aligned} & \overrightarrow{0} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{n}{n} \end{aligned}$	$\stackrel{n}{n}$	$\stackrel{n}{\sim}$	$\stackrel{\infty}{\stackrel{\infty}{+}}$	$\stackrel{\perp}{\infty}$	∞ i i

Table 1．Continued	
pesticides	ionization
trichlorfon	$[\mathrm{M}+\mathrm{H}]^{+}$
tricyclazole ${ }^{i}$	$[\mathrm{M}+\mathrm{H}]^{+}$
trietazine	$[\mathrm{M}+\mathrm{H}]^{+}$
trifloxysulfuron	$[\mathrm{M}+\mathrm{H}]^{+}$
triforine ${ }^{h, j}$	$[\mathrm{M}+\mathrm{H}]^{+}$
trimethacarb ${ }^{i}$	$[\mathrm{M}+\mathrm{H}]^{+}$
zinophos ${ }^{e}$	$[\mathrm{M}+\mathrm{H}]^{+}$
zoxamide	$[\mathrm{M}+\mathrm{H}]^{+}$
aBeld and underlined are the	

[^1]Table 2. Liquid Chromatographic Gradient Profiles and MS Parameters

Kinetex C_{18}				Atlantis dC_{18}			
total time	flow rate ($\mu \mathrm{L} / \mathrm{min}$)	A (\%)	B (\%)	total time	flow rate ($\mu \mathrm{L} / \mathrm{min}$)	A (\%)	B (\%)
0.0	300	92	8	0.0	200	92	8
4.0	300	10	90	7.0	200	10	90
8.0	300	10	90	25.0	200	10	90
9.0	500	0	100	28.0	300	0	100
9.5	500	0	100	28.1	300	92	8
10.0	500	92	8	35.0	200	92	8
12.0	300	92	8				
MS parameters				MS parameters			
collision gas (CAD)		7		collision gas (CAD)			7
curtain gas		25		curtain gas (CUR)			20
ion source		60		ion source gas 1 (GS1)			50
ion source		60		ion source gas 2 (GS2)			50
ionspray vo		5000		ionspray voltage (IS)			5000
temperatur		550		temperature			500

For the pilot study of 100 samples, grain samples ($5.0 \mathrm{~g} /$ sample) were weighed into individual 50 mL polypropylene centrifuge tubes (VWR International). To each sample, $250 \mu \mathrm{~L}$ of $2.0 \mu \mathrm{~g} / \mathrm{mL}$ internal calibration standard working solution ($100.0 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in sample) was added, and the extraction procedure was the same as that of the fortification experiment.

Preparation of Matrix-Matched Calibration Standards and Calculation. Matrix-matched calibration standards were prepared by adding standards and internal standards to blank sample extracts after sample extraction and cleanup. A blank grain sample ($5.0 \mathrm{~g} /$ sample) was weighed into a 50 mL centrifuge tube, and the sample was processed through the extraction procedure as described above. To each of the six remaining $0.1-0.2 \mathrm{~mL}$ sample extracts, $250 \mu \mathrm{~L}$ of each six-level pesticide standard mix working solution was added, providing $5.0,25.0,100.0,200.0,300.0$, and $500.0 \mu \mathrm{~g} / \mathrm{kg}$ of standard equivalent in samples. Then, $50 \mu \mathrm{~L}$ of $2.0 \mu \mathrm{~g} / \mathrm{mL}$ internal calibration working solution was added to each sample ($100.0 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in samples). The extracts were made up to 0.5 mL with methanol, vortexed for 30 s , made up volume to 1.0 mL with 0.1 M ammonium acetate, and then vortexed again for 30 s . The extracts were diluted six times prior to LC/ESI-MS/MS injection using solvent buffer.

Quantification. Matrix-matched standard calibration curves for each individual pesticide were constructed using the "Quantitate" function bundled with the Analyst software. The quantification integration algorithm applied was IntelliQuan with no data smoothing. Deuterium-labeled standards carbendazim- d_{4}, carbofuran $-d_{3}$, and thia-bendazole- d_{4} were used as internal standards for their respective native compounds for quantification. All other pesticides used carbofuran- d_{3} as an internal standard for quantification because it had consistent recovery around 90% and demonstrated linear response. A quadratic function was applied to the calibration curves based on the line of best fit. The $1 / x$ weighting was used to accurately quantify pesticides at low concentrations. Responses for the unknown or fortified samples were compared to the curves to calculate the amount of pesticide residues, $\mu \mathrm{g} / \mathrm{kg}$, in samples.

Experimental Design and Method Validation. The method was validated with the nested experimental design, which was described elsewhere. ${ }^{7,8}$ The main factors of variances associated with the method performance or measurement uncertainties of an in-house
validated method using the spiked samples are concentrations or spike levels of analytes, matrix effects, day-to-day variation, and within day variation of the method. The last two factors are designated as the intermediate precision. In this study, there were a total of six grain matrices. For each matrix, samples were spiked at four levels, that is $10.0,90.0,240.0$, and $400.0 \mu \mathrm{~g} / \mathrm{kg}$, in triplicate. Spike experiments were repeated by two analysts. Overall recovery, intermediate precision, and measurement uncertainty were calculated using a combined computer program that consisted of SAS codes (SAS Software Release 9.1, SAS Institute Inc., United States) along with a Microsoft Excel (Microsoft Office 2002) workbook. ${ }^{7}$

RESULTS AND DISCUSSION

Extraction. Pesticides were extracted from grain samples ($5 \mathrm{~g} /$ sample) as described above. The whole procedure entailed step 1: hydration. Grain samples have to be hydrated to improve pesticide extraction efficiency as recommended in the QuEChERs method. ${ }^{10}$ To determine the amount of water required to hydrate 5 g of grain sample, 5,10 , or 15 mL of water was tested. It was found that 15 mL of water was needed to wet an entire sample and yield consistent recoveries. Subsequently, the total water content in the sample (5 g) mixture should be $>80 \%$ after the addition of 15 mL of water. Some grain samples required vortexing to completely break clumps present in the mixture. It was also important to allow samples to hydrate for 30 min at room temperature prior to the next step; step 2: extraction. This step entailed adding acetonitrile to samples and partitioning pesticides into acetonitrile using anhydrous MgSO_{4}. After the addition of 15 mL of acetonitrile and acetic acid $(99+1, \mathrm{v} / \mathrm{v})$ to the sample mixture, samples required 45 s of shaking before sodium acetate $(1.5 \mathrm{~g})$ and $\mathrm{MgSO}_{4}(6.0 \mathrm{~g})$ were added. This step was critical to ensure good method performance; otherwise, poor or inconsistent recoveries were observed. In general, $7-9 \mathrm{~mL}$ of initial acetonitrile extracts (15 mL), which was adequate for the cleanup, was yielded after centrifugation (3 min at 2100 g); step 3: cleanup or dispersive solid-phase extraction (d-SPE). In an initial study, MgSO_{4} and PSA; MgSO_{4}, PSA, and graphitized black carbon; or $\mathrm{MgSO}_{4}, \mathrm{PSA}$, and C_{18} were compared.

Response Comparison between Scheduled MRM and Non-scheduled MRM

Figure 1. UHPLC/ESI-MS/MS (Kinetex C_{18}) 151 pesticide response comparison between scheduled MRM and nonscheduled MRM. The pesticides were prepared in solvent buffer at a concentration of $100 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in sample. Injection volume: $5 \mu \mathrm{~L}$. (A) By peak area and (B) by peak height. Bars above x-axial (pesticide ID number) are response ratios (>1) of scheduled MRM over nonscheduled MRM. Bars below x-axial are response ratios (<-1) of nonscheduled MRM over scheduled MRM.

The combination of MgSO_{4}, PSA, and C_{18} proved to be more efficient for cleanup in terms of extraction efficiency (recovery) and repeatability than others. C_{18} helped for some relatively nonpolar compounds in matrices. After steps 2 and 3, normally $>5 \mathrm{~mL}$ of extracts, which was required for the next step, was obtained; step 4: concentration, reconstitution, and filtration. This step helped further to remove coextractives. After concentration and reconstitution, the extracts turned turbid or cloudy, and filtration was necessary to get rid of precipitates in the final extracts prior to the LC injection by the Mini-UniPrep vials with a filtration membrane, that is, polyvinylidene difluoride (PVDF). Because 3 mL of supernatant was used to concentrate and reconstitute into 1 mL , the final extract was equivalent to 1 g matrix per mL at this point. The extracts were diluted six times prior to LC-MS injection.

MS/MS Data Acquisition. MS/MS data acquisition was based on the multiple reaction monitoring (MRM) transitions that were predetermined by infusing the 151 pesticides and three isotopically labeled standards (Table 1, column 1) into an API 5000 mass spectrometer. Table 1 (columns 3 and 4) lists MRM transitions of 151 pesticides for either quantification or confirmation. Pesticides were ionized in form of $[M+H]^{+},[M+$ $\left.\mathrm{NH}_{4}\right]^{+}$, or $[\mathrm{M}+\mathrm{Na}]^{+}$(Table 1, column 2) in the positive electrospray mode depending on their chemical structures in the presence of ammonium acetate (10 mM) in LC mobile phase. In routine practice, the first transition, that is, the most intense product ion of its corresponding precursor, was used for quantification or screening, and the second or third transition along with retention time was utilized for confirmation. Some
pesticides shared the same transitions and eluted at approximately the same retention time; therefore, the second transitions were chosen for quantification. For example, isoprocarb and trimethacarb both had 194/137 transition and eluted at 8.37 min ; the second transition of trimethacarb, that is, 194/122, was selected for quantification; and its third transition was used for confirmation. The same scenarios were observed for methabenzthiazuron and carbofuran and dimethametryn and dipropetryn.

Scheduled MRM versus Nonscheduled MRM. MS/MS data acquisition can occur in either single or multiple retention time windows, which affect the instrument duty cycle and cycle time. Duty cycle is inversely proportional to the number of concurrent MRMs monitored, but the total cycle time is proportional to the number of MRMs in the same retention period. A high duty cycle provides good sensitivity, and a short cycle time increases the sampling rate across an LC peak, which results in a more reproducible quantitative result. The API 5000 LC/MS/MS System allows up to 300 MRM transitions concurring in single retention time window, and it also features the so-called sched-uled-MRM, where individual transitions can be monitored in narrowly designated retention windows at the time when analytes are eluted. Therefore, with the scheduled MRM, the number of concurrent MRM transitions is significantly reduced, resulting in much higher duty cycles for each analyte. The software computes maximal dwell times for the coeluting analytes while maintaining the desired cycle time. As a result, a maximized dwell time, an optimal cycle time, and the highest possible duty cycle for each MRM ensure that the analytical

Figure 2. UHPLC/ESI-MS/MS (Kinetex C_{18}) 151 pesticide repeatability (relative standard deviation, \%) comparison between scheduled MRM and nonscheduled MRM. The pesticides were prepared in solvent buffer at a concentration of $100 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in sample. Injection volume: $5 \mu \mathrm{~L}$. (A) By peak area and (B) by peak height.
precision is maintained and sensitivity is improved at higher multiplexing.

Nonscheduled MRM has been used for conventional LC such as Atlantis dC_{18} in our routine applications. However, there was a concern that there might not be enough data points across a chromatographic peak for quantification, when nonscheduled MRM was used for Kinetex C_{18}, because the peak width was narrow and only a few seconds wide. Therefore, a study was carried out to determine to how scheduled MRM would help to improve method performance in terms of sensitivity and repeatability. As shown in Figure 1, bars above the x-axial or response ratios as positive numbers indicated that the responses from scheduled MRM were higher than those from nonscheduled MRM and vice versa. The scheduled MRM provided the improved responses or sensitivity overall because most of bars were above x-axial. Furthermore, by either peak area or height, the scheduled MRM provided much better repeatability than nonscheduled MRM (Figure 2). For example (by peak area), 84% pesticides had relative standard deviation $\leq 5 \%$ when scheduled MRM was applied, as compared to 31% from the nonscheduled MRM. The scheduled MRM became essentials to Kinetex C_{18} applications in this study to obtain adequate data points for quantification along with the benefit of the improved sensitivity.

UHPLC/ESI-MS/MS (Kinetex C_{18}) versus LC/ESI-MS/MS (Atlantis dC_{18}). The liquid chromatographic gradient profiles are shown in Table 2. For UHPLC (Kinetex C_{18}), the mobile phase B (acetonitrile) was ramped from 8 to 90% in 4 min , and then, it was kept at 90% until 8 min with a flow rate of $300 \mu \mathrm{~L} / \mathrm{min}$ before the column was regenerated, and the total run time was 12 min . The first pesticide eluted from the Kinetex C_{18} column was cyromazin at 1.46 min , and the last pesticide was

Figure 3. LC-MS chromatograms of 151 pesticides ($200 \mu \mathrm{~g} / \mathrm{kg}$) and three internal standards ($100 \mu \mathrm{~g} / \mathrm{kg}$) spiked in seven grain extracts. Injection volume: $5 \mu \mathrm{~L}$. (A) A chromatogram from Kinetex C_{18} with a total run time of 12 min . (B) A chromatogram from Atlantis dC_{18} with a total run time of 35 min .

Response Comparison between Kinetex C_{18} and Atlantis dC $\mathbf{1 8}_{\mathbf{1 8}}$

Figure 4. LC-MS 151 pesticide response comparison between Kinetex C_{18} and Atlantis dC_{18}. The pesticides were prepared in solvent buffer at a concentration of $100 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in sample. Injection volume: $5 \mu \mathrm{~L}$. Data were acquired using nonscheduled MRM. (A) By peak area and (B) by peak height. Bars above x-axial (pesticide ID number) are response ratios (>1) of Kinetex C_{18} over Atlantis dC_{18}. Bars below x-axial are response ratios (<-1) of Atlantis dC_{18} over Kinetex C_{18}.
dodemorph at 9.22 min (Figure 3A). For LC (Atlantis dC_{18}), the mobile phase B (acetonitrile) was ramped from 8 to 90% in 7 min , and then, it was kept at 90% until 25 min with a flow rate of $200 \mu \mathrm{~L} / \mathrm{min}$ before the column was regenerated, and the total run time was 35 min . The first pesticide eluted from the Atlantis dC_{18} column was cyromazin at 3.28 min , and the last pesticide was dodemorph at 20.41 min (Figure 3B). Both UHPLC and LC pesticide retention times are listed in Table 1 (columns 11 and 16). The retention times, within and between batches, were reproducible for most of the pesticides, except for emamectin $B_{1 a}$, fenpropidin, and spiroxamine, which drifted within-batch analysis from both columns. Nevertheless, the tolerance of retention time matching did not exceed 2.5% relative to the retention time of a standard in the same batch under all circumstances. The total run time from Kinetex C_{18} was about $1 / 3$ of that from Atlantis dC_{18}. Because the increased flow rate in Kinetex C_{18}, that is, $300 \mu \mathrm{~L} / \mathrm{min}$, the associated mass spectrometric desovaltion parameters (Table 2) such as curtain gas, ion source gas 1 and 2 , and temperature were increased accordingly so as to maintain ionization efficiency and to reduce chance of contamination to the front end of mass spectrometer. It should be mentioned that Kinetex C_{18} $(100 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 2.6 \mu \mathrm{~m})$ produced a column back pressure up to 3500 psi during the course of a gradient, as compared to up to 1500 psi from Atlantis $\mathrm{dC}_{18}(100 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 3 \mu \mathrm{~m})$.

Figure 4 showed the comparisons of responses between Kinetex C_{18} and Atlantis dC_{18} by peak area or height. The data were acquired according to the nonscheduled MRM, and $5 \mu \mathrm{~L}$
of extracts was injected on either column. In terms of peak areas, the responses from either Kinetex C_{18} or Atlantis dC_{18} were close to each other as shown in Figure 4A. However, when comparing peak heights (Figure 4B), the responses from Kinetex C_{18} were in general higher (bars above x-axial) than those from Atlantis dC_{18}. The Kinetex C_{18} provided narrower or shaper peaks, shortened the analytical run time by $2 / 3$, and improved single-to-noise ratio or increased the sensitivity, as compared to Atlantis dC_{18} (Figure 3). Furthermore, the amount of sample extracts injected on Kinetex C_{18} column was reduced while still achieving the required sensitivity. Consequently, it helped to reduce ion source contamination, to extend column life, and to reduce matrix effects. As a good practice, $3 \mu \mathrm{~L}$ of sample extracts was used to inject on Kinetex C_{18} to generate data for method performance evaluation or method validation.

Matrix Effects. It was expected that the narrow or sharp chromatographic peaks would result in reduced matrix effects. Because of the improved chromatographic resolution of a coreshell column, analytes of interests should show improved separation from coextractives. However, this was not observed in the current study. Matrix effects were evaluated by comparing the responses of pesticides in sample extracts (post extraction spike) to those pesticide standards prepared in solvent buffer at the same concentration level, for example, $100 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in sample. The pesticides may encounter either ion suppression or enhancement in presence of grain matrices. Figure 5 showed the profile or distribution of matrix effects, and x-axial is the ratio, expressed as percentage, of pesticide responses in the presence of

Matrix Effects Comparison between Kinetex C_{18} and Atlantis dC_{18}

Figure 5. LC-MS matrix effects comparison between Kinetex C_{18} and Atlantis dC_{18}. The 151 pesticides were prepared in matrix extracts (six grain matrices) at a concentration of $100 \mu \mathrm{~g} / \mathrm{kg}$ equivalent in sample. Injection volume: $5 \mu \mathrm{~L}$. Data were acquired using nonscheduled MRM. (A) Kinetex C_{18} and (B) Atlantis dC_{18}.
matrix to those in solvent buffer. More ion suppression was observed from the Kinetex C_{18} (Figure 5A) than from Atlantic dC_{18} (Figure 5B). The distribution from Atlantic dC_{18} was skewed toward the range $71-110 \%$, which was translated into less matrix effects. Therefore, Kinetex C_{18} may not end up with reduced matrix effects when injecting the same amount of samples as on Atlantis dC_{18}. Nevertheless, all matrices examined, except for seven grains, showed similar matrix effects profiles on either column. Therefore, in routine practice, grains (or nonmixed) may be used interchangeably to prepare matrix-matched standard calibration curves along with isotopically labeled internal standards to compensate matrix effects when analyzing samples.

Method Validation and Method Performance. Both UHPLC/ ESI-MS/MS (Kinetex C_{18}) with scheduled MRM and LC/ ESI-MS/MS (Atlantis dC_{18}) with nonscheduled MRM were validated according to a statistical experimental design or the nested design, which included four factors, that is, pesticide concentrations or spike levels, matrix effects, day-to-day variation, and within-day variation. The designed experiment provided validation data to study and evaluate method performance parameters in terms of accuracy expressed as overall recovery, intermediate precision, and measurement uncertainty (MU). Pesticides were spiked into six grain matrices at $10,90,240$, and $400 \mu \mathrm{~g} / \mathrm{kg}$ in triplicate, and each experiment
was repeated by a different analyst on a separate day. The performance parameters were calculated using a combined SAS statistical program. Detailed calculations and equations were described elsewhere. ${ }^{7,8}$ The method performance results are summarized in Table 1 (Kinetex C_{18}, table columns 13-15; Atlantis dC_{18}, table columns $18-20$) and are depicted in Figure 6. Generally, 90 or 91% of the pesticides (Figure 6A) had recoveries between 81 and 110% by Kinetex C_{18} and Atlantis dC_{18}, respectively. However, Kinetex C_{18} provided better intermediate precision and less measurement uncertainty than Atlantis dC_{18}. For example, 54% of the pesticides had intermediate precision $\leq 10 \%$ by Kinetex C_{18}, whereas 41% by Atlantis dC_{18} (Figure 6B). Consequently, 45% of the pesticides possessed $\mathrm{MU} \leq 20 \%$ by Kinetex C_{18}, as compared to 30% by Atlantis dC_{18} (Figure 6C). Using either column, the method was able to quantify 90% of the pesticides with $M \mathrm{MU} \leq 50 \%$ in grains, which was recommended as a default value in European Union Document SANCO/10684/ 2009 for pesticide analysis and enforcement decisions (MRLexceedances). ${ }^{11}$ The use of scheduled MRM may contribute to the better quantitative results from Kinetex C_{18}.

Sensitivity. The method sensitivity was evaluated according to signal-to-noise (S / N) ratios (peak-to-peak) at the lowest concentration level (Table 1, columns 12 and 17). Generally, most pesticides were detected and quantified below or at $5 \mu \mathrm{~g} / \mathrm{kg}$, except for abamectin $\mathrm{B} 1_{a}$, aclonifen, benoxacor, chlorbromuron, cyanofenphos, diclocymet, dodemorph, etofenprox, isoxathion, linuron, molinate, prodiamine, propamocarb, pyridalyl, pyridaphenthion, pyridate, pyrifenox, quizalofop, quizalofop-ethyl, spirodiclofen, thiofanox, and/or zinophos, the lowest concentration levels (LCLs) of which are bolded and underlined in Table 1 (columns 12 and 17), by either Kinetex C_{18} ($3 \mu \mathrm{~L}$ injection) or Atlantis dC_{18} ($5 \mu \mathrm{~L}$ injection). In general, Kinetex C_{18} provided better sensitivity than Atlantis dC_{18}, despite $3 / 5$ injection volume was used.

Pilot Study. Because of its overall superior method performance, the UHPLC/ESI-MS/MS (Kinetex C_{18}) was used to analyze 100 samples in a pilot study to further evaluate method performance or applicability. Different kinds of grains including wheat, rice, corn, durum wheat, etc. were purchased, processed, and analyzed. No positive or incurred pesticide samples were found. As a control practice during the pilot study, a proficiency test (PT) sample was also analyzed for thiabendazole. The study showed that the method performed as it should and yielded a result of $178 \mu \mathrm{~g} / \mathrm{kg}$ thiabendazole with a z-score +0.36 .

In conclusion, both UHPLC/ESI-MS/MS (Kinetex C_{18}) and LC/ESI-MS/MS (Atlantis dC_{18}) methods reported in this paper can be routinely used to determine 151 pesticides in grain samples. The analytical range is $5-500 \mu \mathrm{~g} / \mathrm{kg}$ with the lowest concentration level at $5 \mu \mathrm{~g} / \mathrm{kg}$ for all pesticides ($\mathrm{S} / \mathrm{N}>10$), except for a few pesticides. For UHPLC/ESI-MS/MS (Kinetex C_{18}) with scheduled MRMs, 90% of the pesticides studied had recoveries between 81 and $110 \%, 88 \%$ of the pesticides had intermediate precision $\leq 20 \%$, and 84% of the pesticides showed measurement uncertainty $\leq 40 \%$. As compared to UHPLC/ESIMS/MS (Kinetex C_{18}), LC/ESI-MS/MS (Atlantis dC_{18}) showed a relatively lower sensitivity, less repeatability, and larger measurement uncertainty. Apparently, both $2.6 \mu \mathrm{~m}$ core-shell particle column (Kinetex C_{18}) and scheduled MRM contributed to the better performance of the UHPLC/ESI-MS/MS method, in addition to its shortened analytical run time. UHPLC/ESI-MS/MS (Kinetex C_{18}) proved to be an ideal means for the determination of pesticides in grains in routine monitoring programs.

Figure 6. UHPLC/ESI-MS/MS (Kinetex C_{18}, scheduled MRM) and LC/ESI-MS/MS (Atlantis dC_{18}, nonscheduled MRM) method performance for analysis of pesticides in grains. (A) Overall recovery, (B) precision, and (C) measurement uncertainty. The injection volume was $3 \mu \mathrm{~L}$ on $\mathrm{Kinetex} \mathrm{C}_{18}$ and $5 \mu \mathrm{~L}$ on Atlantis dC_{18}.

AUTHOR INFORMATION

Corresponding Author

*Tel: 403-299-3998. Fax: 403-221-3293. E-mail: Jian.Wang@ inspection.gc.ca.

■ DISCLOSURE

We indicate that the analytical columns described or mentioned in this paper do not in any way constitute an endorsement by the authors.

REFERENCES

(1) Alder, L.; Greulich, K.; Kempe, G.; Vieth, B. Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS? Mass Spectrom. Rev. 2006, 25 (6), 838-865.
(2) Wang, J.; Chow, W.; Leung, D. Applications of LC/ESI-MS/ MS and UHPLC QqTOF MS for the determination of 148 pesticides in fruits and vegetables. Anal. Bioanal. Chem. 2010, 396 (4), 1513-1538.
(3) Gritti, F.; Leonardis, I.; Shock, D.; Stevenson, P.; Shalliker, A.; Guiochon, G. Performance of columns packed with the new shell particles, Kinetex-C ${ }_{18}$. J. Chromatogr. A 2010, 1217 (10), 1589-1603.
(4) Gritti, F.; Leonardis, I.; Abia, J.; Guiochon, G. Physical properties and structure of fine core-shell particles used as packing materials for chromatography: Relationships between particle characteristics and column performance. J. Chromatogr. A 2010, 1217 (24), 3819-3843.
(5) Abrahim, A.; Al-Sayah, M.; Skrdla, P.; Bereznitski, Y.; Chen, Y.; Wu, N. Practical comparison of $2.7 \mu \mathrm{~m}$ fused-core silica particles and porous sub- $2 \mu \mathrm{~m}$ particles for fast separations in pharmaceutical process development. J. Pharm. Biomed. Anal. 2010, 51 (1), 131-137.
(6) Kansal, M.; Huq, S.; Sanchez, C. Kinetex sorbents for fast LC/ MS applications: Successes and challenges. Phenomenex Application Note;
http://www.phenomenex.com/lib/po75760510_1_4.pdf; accessed on February 17, 2011.
(7) Wang, J.; Wotherspoon, D. Determination of pesticides in apples by liquid chromatography with electrospray ionization tandem mass spectrometry and estimation of measurement uncertainty. J. AOAC Int. 2007, 90 (2), 550-567.
(8) Wang, J.; Leung, D.; Butterworth, F. Determination of five macrolide antibiotic residues in eggs using liquid chromatography/ electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2005, 53 (6), 1857-65.
(9) AOAC Official Method 2007.01 Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate gas chromatography/mass spectrometry and liquid chromatography/ tandem mass spectrometry. First Action 2007.
(10) QuEChERS-A mini-multiresidue method for the analysis of pesticide residues in low-fat products; http://www.quechers.com/ default.htm; accessed on May 11, 2011.
(11) Method validation and quality control procedures for pesticide residues analysis in food and feed. Document No. SANCO /10684/2009 Supersedes Document No. SANCO/3131/2007 Implemented by 01/01/2010; http://ec.europa.eu/food/plant/protection/resources/ qualcontrol_en.pdf, 2009.

[^0]: Table 1. Continued

[^1]: 22 ${ }^{b}$

